

Efektivitas Ukuran Bukaan Mulut Bubu Karang terhadap Hasil Tangkapan Ikan di Perairan Sorong

[Effectiveness of Different Funnel Openings of Reef Fish Traps on Catch Performance in Sorong Waters]

Max Siaila, Toni Ruchimat, Meuthia Aula Jabbar

Program Pasca Sarjana Politeknik Ahli Usaha Perikanan Jalan Raya Pasar Minggu, Jakarta Selatan, Jakarta 12520

Diterima: 17 Juli 2024

Abstrak

Pada tahun 2016, produksi perikanan tangkap di Kota Sorong tercatat sebesar 47.328 ton, namun pada tahun 2017 mengalami penurunan menjadi 44.710 ton (BPS, 2017). Penurunan dan fluktuasi hasil produksi tersebut umumnya dipengaruhi oleh jenis alat tangkap yang digunakan serta kapasitas kapal yang beroperasi. Berangkat dari kondisi ini, penelitian dilakukan untuk mengkaji sejauh mana variasi ukuran bukaan mulut bubu memengaruhi hasil tangkapan ikan di perairan Sorong, Papua Barat Daya. Penelitian menerapkan metode **experimental fishing** dengan membandingkan tiga ukuran bukaan mulut bubu, yakni Ø30 cm, Ø40 cm, dan Ø50 cm, selama periode enam bulan (Januari–Juni 2024). Hasil penelitian memperlihatkan adanya pengaruh signifikan dari perbedaan ukuran bubu terhadap jumlah dan komposisi ikan yang tertangkap. Secara total diperoleh 124 ekor ikan dengan berat kumulatif 122,4 kg yang terdiri atas 20 spesies. Bubu dengan bukaan Ø50 cm memberikan hasil paling tinggi, ditandai dengan dominasi tangkapan Kakap Timor (*Lutjanus timorensis*) sebesar 19 kg. Analisis data menggunakan Rancangan Acak Kelompok (RAK) yang dilanjutkan dengan Uji Beda Nyata Terkecil (BNT) menguatkan temuan bahwa ukuran bukaan bubu berpengaruh nyata terhadap produktivitas hasil tangkapanKata

kunci: bubu sorong; bubu; funnel; ukuran bubu

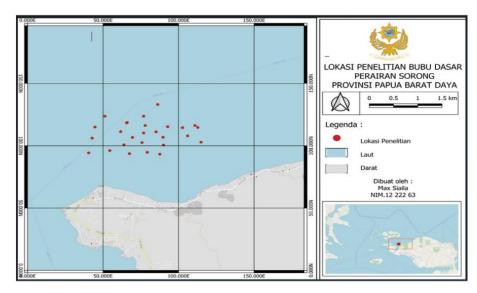
Abstract

In 2016, capture fisheries production in Sorong City was recorded at 47,328 tons, but it declined to 44,710 tons in 2017 (BPS, 2017). Such fluctuations are generally influenced by the types of fishing gear employed and the capacity of the operating vessels. Against this background, the present study was conducted to examine the extent to which variations in the entrance diameter of collapsible fish traps (bubu) affect catch performance in the waters of Sorong, Southwest Papua. The research applied an **experimental fishing** approach, testing three trap entrance diameters (Ø30 cm, Ø40 cm, and Ø50 cm) over a six-month period (January–June 2024). The findings demonstrated that trap size had a significant effect on both the number and species composition of the catch. A total of 124 individuals, with a cumulative biomass of 122.4 kg representing 20 species, were collected during the study. The Ø50 cm trap yielded the highest catch, dominated by Timor Snapper (*Lutjanus timorensis*) with a total weight of 19 kg. Statistical analysis using a Randomized Block Design (RBD), followed by the Least Significant Difference (LSD) test, confirmed significant differences among trap sizes in relation to catch productivity.

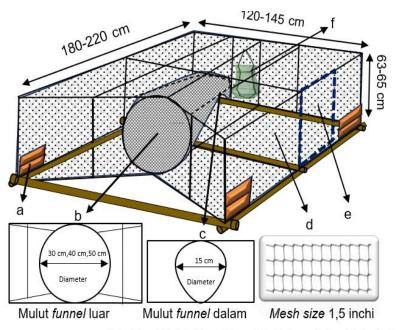
Keywords: Sorong fish trap; fish trap; funnel; trap size

Penulis Korespondensi

Max Siaila | max24siaila@gmail.com


PENDAHULUAN

Secara astronomis, Kota Sorong terletak antara 0°47′-0°57′ Lintang Selatan dan 131°14′–131°24′ Bujur Timur (Pemerintah Provinsi Papua Barat Daya, 2023; BPS Kota Sorong, 2023).Sorong memiliki potensi besar di sektor pesisir dan kelautan Muharuddin (2019). Pada perkembangannya kontribusi sektor perikanan tangkap terhadap ekonomi dan kesejahteraan masyarakat di wilayah Sorong terus terjadi. Pada tahun 2016, produksi perikanan tangkap di Kota Sorong mencapai 47.328 ton, pada tahun 2017 mengalami penurunan dengan jumlah produksi 44.710 ton (BPS 2017; Pangestuti. 2017). Fluktuasi produksi ini dipengaruhi oleh penggunaan alat tangkap dan volume kapal yang digunakan dalam kegiatan perikanan.


Kegiatan penangkapan ikan di perairan Sorong memanfaatkan beragam alat tangkap di antaranya alat tangkap jaring seperti jaring insang (gillnet), bagan perahu (boat liftnet), dan pukat cincin (purse seine) digunakan untuk menangkap ikan pelagis seperti ikan teri (Stolephorus spp.), kembung (Rastrelliger kanagurta), dan layang (Decapterus spp.) (Darmawan, 2017; Makatita et al., 2013; Pranata, 2023). Sementara itu, alat tangkap pancing seperti pancing ulur (hand line), pancing tonda (trolling lines), pole and line (huhate), serta jig metal fishing dimanfaatkan untuk penangkapan ikan tuna dan cakalang di perairan dalam (Irianto & Mofu, 2022; Karim et al., 2024; Yafeto & Mofu, 2022). Keberagaman alat tangkap ini menunjukkan adaptasi nelayan Sorong terhadap kondisi sumber daya ikan dan teknologi penangkapan.

Ketergantungan nelayan pada beragam alat tangkap ini sangat tinggi, sementara alat tangkap bubu belum umum diterapkan di Sorong. Padahal alat tangkap bubu dikenal ramah lingkungan dan memiliki potensi selektivitas yang baik. Selain itu dalam pengoperasiannya bubu dapat disesuaikan dengan tingkah laku ikan, di mana ikan-ikan yang hidup di daerah karang merupakan spesies menetap (Sedentary species). Menurut (Sari et al., 2021; Jayanto et al 2018; Iskandar dan Rachmad 2013; Purwanto et al. 2013; Zulkarnain 2012;) Bubu merupakan alat tangkap berupa perangkap yang secara pasif difungsikan untuk menangkap ikan dan tangkapan lainnya. Bubu biasanya menghasilkan tangkapan ikan dengan nilai ekonomis tinggi yang bisa dijadikan komoditas ekspor.

Efektivitas dan selektivitas bubu sangat dipengaruhi oleh desainnya, terutama ukuran bukaan mulut. Penelitian terdahulu yang mengkaji ukuran bubu menyatakan pemilihan ukuran bukaan mulut bubu yang tepat dapat meningkatkan efisiensi penangkapan

Gambar 1. Lokasi Penelitian

Keterangan: a).Pemberat b).Mulut funnel luar c).Mulut funnel dalam d).Mesh size e).Pintu bubu

Gambar 2. Desain dan dimensi kerangka bubu

dan keberlanjutan usaha perikanan (Taufiq et al. 2020; Zulkarnain et al. 2019; Wiyono et al. 2018). Meskipun berbagai ukuran bubu telah digunakan di berbagai daerah, penelitian yang secara spesifik mengkaji pengaruh ukuran bukaan mulut terhadap hasil tangkapan di perairan Sorong masih terbatas. Sebagian besar

studi sebelumnya berfokus pada jenis umpan, bahan, atau lokasi penangkapan, bukan pada variasi ukuran bukaan mulutnya. Kondisi ini menunjukkan adanya kesenjangan penelitian terkait efektivitas ukuran bukaan mulut bubu terhadap hasil tangkapan di wilayah Sorong yang memiliki karakteristik

Tabel 1. Penataan letak rancangan penelitian

No	Trin	Jenis bukaan mulut bubu						
No	Trip	F1	F2	F3				
1		Lokasi 1	Lokasi 2	Lokasi 3				
2	II	Lokasi 2	Lokasi 3	Lokasi 1				
3	III	Lokasi 3	Lokasi 1	Lokasi 2				
4	IV	Lokasi 1	Lokasi 2	Lokasi 3				
5	V	Lokasi 2	Lokasi 3	Lokasi 1				
6	VI	Lokasi 3	Lokasi 1	Lokasi 2				
7	VII	Lokasi 1	Lokasi 2	Lokasi 3				
8	VIII	Lokasi 2	Lokasi 3	Lokasi 1				
9	IX	Lokasi 3	Lokasi 1	Lokasi 2				

Keterangan: F1) = Bukaan Funnel 30, (F2) = Bukaan Funnel 40, (F3) = Bukaan Funnel 50

Tabel 2. Posisi penelitian

Trip	Stasiun	Lokasi	Lintang	Bujur
1	1	Lokasi 1	0°48'20.3"S	131°14'17.4"E
	2	Lokasi 2	0°48'16.8"S	131°14'24.8"E
	3	Lokasi 3	0°48'15.9"S	131°14'33.2"E
2	4	Lokasi 1	0°48'11.7"S	131°14'40.9"E
	5	Lokasi 2	0°48'12.5"S	131°14'50.8"E
	6	Lokasi 3	0°48'12.3"S	131°15'01.0"E
3	7	Lokasi 1	0°48'19.1"S	131°14'54.2"E
	8	Lokasi 2	0°48'10.8"S	131°14'59.1"E
	9	Lokasi 3	0°48'24.2"S	131°15'03.1"E
4	10	Lokasi 1	0°48'20.2"S	131°14'37.8"E
	11	Lokasi 2	0°48'26.5"S	131°14'38.1"E
	12	Lokasi 3	0°48'24.5"S	131°14'23.7"E
5	13	Lokasi 1	0°48'32.4"S	131°14'27.3"E
	14	Lokasi 2	0°48'26.4"S	131°14'11.7"E
	15	Lokasi 3	0°48'33.5"S	131°14'15.4"E
6	16	Lokasi 1	0°48'31.0"S	131°14'02.3"E
	17	Lokasi 2	0°48'33.9"S	131°14'35.6"E
	18	Lokasi 3	0°48'10.8"S	131°14'25.9"E
7	19	Lokasi 1	0°48'08.3"S	131°14'13.9"E
	20	Lokasi 2	0°48'15.7"S	131°14'09.5"E
	21	Lokasi 3	0°48'12.0"S	131°13'52.4"E
8	22	Lokasi 1	0°48'21.0"S	131°13'50.5"E
	23	Lokasi 2	0°48'32.8"S	131°13'48.2"E
	24	Lokasi 3	0°48'03.2"S	131°13'59.0"E
9	23	Lokasi 1	0°47'53.8"S	131°14'34.3"E
	26	Lokasi 2	0°48'03.2"S	131°14'24.8"E
	27	Lokasi 3	0°48'08.6"S	131°14'13.5"E

perairan berbeda. Penelitian ini memiliki kebaruan dengan melakukan perbandingan tiga ukuran bukaan mulut bubu, yaitu 30 cm, 40 cm, dan 50 cm, untuk menentukan ukuran yang paling efektif dalam meningkatkan hasil tangkapan. Tujuan penelitian ini adalah untuk menganalisis pengaruh perbedaan ukuran bukaan mulut bubu terhadap hasil tangkapan ikan serta menentukan ukuran yang paling efisien bagi nelayan di perairan Sorong.

BAHAN DAN METODE PENELITIAN

Penelitian ini dilaksanakan pada bulan Januari hingga Juni 2024 di Perairan Sorong, Provinsi Papua Barat Daya. Kegiatan penelitian dilakukan melalui sembilan trip penangkapan, yang mencakup 27 titik lokasi penelitian dengan kedalaman perairan berkisar antara 15 hingga 40 meter. Lokasi penelitian disajikan pada Gambar 1, sedangkan titik koordinat masing-masing lokasi dapat dilihat pada Tabel 2.

Pengujian terhadap tiga variasi ukuran bukaan mulut bubu dilakukan dengan menerapkan pola rotasi untuk memastikan bahwa setiap perlakuan memperoleh kesempatan yang sama pada masing-masing lokasi penangkapan. Pendekatan ini bertujuan

Tabel 3. Alat dan Bahan

Nama Alat/Bahan	Spesifikasi	Kegunaan					
Perahu motor tempel	15 PK	Transportasi melakukan penelitian					
Unit percobaan	Bubu	Unit penelitian					
Timbangan	40 Kg	Menimbang berat ikan					
Keranjang	$P \times L \times T = 60.5 \times 41.5 \times 32$ cm	Menampung hasil tangkapan					
GPS(Global Position System)	GARMIN ETREX 10 GPS	Melihat posisi penangkapan					
Papan pengukur	80 cm	Mempermudah pengukuran ikan					
Kamera digital	Samsung A30	Dokumentasi kegiatan penelitian					
Umpan	Ikan Rucah/kg	Sebagai daya tarik, dengan tujuan memikat ikan					
Alat tulis	1 set	Mencatat hasil penelitian					

Tabel 4. Spesifikasi alat tangkap bubu dalam percobaan

Konstruksi		Rangka	a	Bukaan Mulut (<i>Funnel</i>)				
	Bahan	Panjang (m)	Lebar (m)	Tinggi (m)	Bahan	Diame (m)	ter	Panjang (m)
Besi	Besi dan jaring PE	1,80	1,20	0,63	Jaring Plastik HDPE	0.30 0,15	dan	0,45
Besi	Besi dan jaring PE	2,00	1,30	0,64	Jaring Plastik HDPE	0,40 0,15	dan	0,50
Besi	Besi dan jaring PE	2,20	1,45	0,65	Jaring Plastik HDPE	0,50 0,15	dan	0,55

menghasilkan data yang objektif dan representatif dalam menilai pengaruh perbedaan ukuran bukaan mulut terhadap efektivitas hasil tangkapan ikan. Setiap trip penelitian terdiri atas tiga kali setting bubu, di mana masingmasing bubu merepresentasikan satu jenis ukuran bukaan mulut yang berbeda, yaitu F1 (30 cm), F2 (40 cm), dan F3 (50 cm). Penempatan setiap jenis bukaan dilakukan secara acak dan bergantian pada lokasi yang berbeda sesuai dengan rancangan penelitian yang telah ditetapkan. Secara keseluruhan, selama sembilan trip penelitian, dilakukan sebanyak 27 kali setting bubu. Desain dan kerangka bubu dapat dilihat pada 2. Gambar Dimensi bubu dalam penelitian sebanyak tiga unit dengan ukuran masing-masing dapat disajikan pada Tabel 4.

Penelitian ini menggunakan Rancangan Acak Kelompok menurut Susilawati (2015). Rancangan Acak Kelompok digunakan bila satuan percobaan dapat dikelompokkan secara berarti, biasanya banyaknya satuan dalam kelompok sama dengan banyaknya perlakuan. Dimensi unit perlakuan dalam penelitian ini adalah sebagai berikut:

A: Penggunaan Bubu F1 berukuran Ø 30 cm (PxLxT) 180 cm x 120 cm x 63 cm

- B : Penggunaan Bubu F2 berukuran Ø 40 cm(PxLxT) 200 cm x 130 cm x 64 cm
- C : Penggunaan Bubu F3 berukuran Ø 50 cm (PxLxT) 220 cm x 145 cm x 65 cm

Ketiga perlakuan tersebut akan dikelompokkan berdasarkan waktu operasi penangkapan ikan. Menurut Nugroho (2008) jumlah ulangan dalam rancangan acak kelompok satu faktor ditentukan berdasarkan persamaan sebagai berikut:

 $(t-1)\times(r-1)\geq15$ di mana : t = perlakuan $\ r=$ ulangan

$$(3-1) \times (r-1) \ge 15$$

 $2r-2 \ge 15$
 $2r \ge 15+2$
 $r \ge 17/2$
 $r \ge 8.5$

atau dibulatkan menjadi 9

Menurut persamaan di atas maka ulangan dapat dihitung dengan jumlah perlakuan sebanyak 3, maka ulangan yang dihasilkan adalah 8,5 yang dibulatkan menjadi 9 ulangan. Untuk lebih jelasnya jumlah perlakuan dan kelompok dapat dilihat pada Tabel 1.

Metode Identifikasi Ikan

Cara yang dilakukan pada saat Identifikasi ikan hasil tangkapan saat penelitian menggunakan Bubu Dasar yang dirancang terdiri dari tiga ukuran bukaan mulut bubu yang berbeda sebagai berikut: 1) Mengambil sampel ikan yang tertangkap oleh Bubu Dasar yang dipakai selama penelitian. Sampel yang digunakan adalah ikan hasil tangkapan. Ikan hasil tangkapan dipisahkan per ekor/jenis. 2) Melakukan pengukuran panjang total dan penimbangan berat. 3)

Melakukan identifikasi ikan dengan mengikuti buku pedoman identifikasi ikan free fish identification tropical pasific Tahun 2003.(Gerald et al., 2003)

Analisis Data

Data yang diperoleh dari percobaan ini merupakan data hasil pengamatan berupa jumlah maupun berat dan ukuran hasil tangkapan selanjutnya dilakukan uji statistik melalui analisis ragam (Susilawati, 2015). Analisis ini digunakan untuk mengetahui pengaruh perlakuan 3 jenis ukuran bukaan mulut bubu yang berbeda terhadap hasil tangkapan ikan. Analisis yang digunakan untuk mendekati tujuan pertama adalah Rancangan Acak Kelompok (Susilawati, 2015). Persamaan umum yang digunakan dalam Rancangan Acak Kelompok adalah sebagai berikut:

$$Y_{ij} = \mu + T_i + \beta_j + \varepsilon_{ij}$$

di mana :

i : 1,2,3,...,r (kelompok waktu operasi penangkapan ikan)

j : 1,2,....,t (perlakuan ukuran bubu)

Yij : Pengamatan pada seluruh satuan percobaan,

μ : rata-rata umum,

Ti : pengaruh kelompok ke-i, βj : pengaruh perlakuan ke-j, Eij : Pengaruh kelompok ke-i dan perlakuan ke-j.

Rancangan Acak Kelompok (RAK) akan diproses menggunakan program SPSS (Statistical Product and Service Solutions). Perlakuannya yang digunakan adalah tiga ukuran bukaan mulut bubu yang berbeda yakni diameter 30 cm, 40 cm dan 50 cm dengan ulangan sebanyak 9 kali ulangan. Untuk memenuhi persyaratan Analisis dalam menarik kesimpulan, maka dirumuskan hipotesis sebagai berikut:

- H₀ adalah η = 0, (j = 1,2, r), yang berarti bukaan mulut bubu yang berbeda tidak memberikan pengaruh yang nyata terhadap hasil tangkapan.
- H₁ adalah η ≠ 0, (j = 1,2,....r), yang berarti bukaan mulut bubu yang berbeda memberikan pengaruh yang nyata terhadap hasil tangkapan.

Hipotesis tersebut diuji dengan menggunakan uji F pada tabel analisis ragam dengan kriteria, jika $F_{hitung} < F_{tabel}$, maka H_0 diterima dan H_1 ditolak, berarti ukuran bubu yang berbeda tidak berpengaruh pada hasil tangkapan. Jika $F_{hitung} > F_{tabel}$, maka H_1 diterima dan H_0 ditolak, berarti ukuran bubu yang

Tabel 5. Analisis ragam

SK	DB	JK	KT	F Hitung -	F Tabel	
SK	DB	JK	KI	r mitung	5%	1%
Kelompok	k-1=v1	JKK	JKK/v1	KTK/KTG	(v1,v3	3)
Perlakuan	t-1=v2	JKP	JKP/v2	KTP/KTG	(v2,v3	3)
Galat	Vt-v1-v2=v3	JKG	JKG/v3	-		
Total	Kt-1=vt	JKT				

berbeda berpengaruh pada hasil tangkapan. Tabel hasil analisis ragam dapat dilihat pada Tabel 5.

Jika penggunaan perlakuan berpengaruh, maka akan dilanjutkan dengan Uji Beda Nyata Terkecil (BNT), untuk mengetahui seberapa besar perbedaannya, dengan rumus:

BNT (5%) = t (db acak, 1%) .
$$\sqrt{\frac{2KTE}{n}}$$

di mana :

BNT (5%): Beda nyata terkecil pada tingkat kepercayaan 5%

t (db acak, 5%): Simpangan baku beda nilai tengah

KTE: Kuadrat tengah acak

n: Ulangan

Data hasil tangkapan experimental fishing dilakukan analisis Uji normalitas kolmogorov smirnov yang merupakan bagian dari uji asumsi klasik. Uji normalitas bertujuan untuk mengetahui apakah nilai residu terdistribusi normal atau tidak. Model regresi yang baik adalah memiliki nilai residu yang terdistribusi normal. Dasar pengambilan keputusan ; Jika nilai Signifikansi > 0,05, maka nilai residu terdistribusi normal,

Jika nilai Signifikansi < 0,05, maka nilai residu tidak terdistribusi normal. Data kemudian penelitian dilakukan uii homogenitas dalam analisis varians (ANOVA) digunakan untuk memeriksa apakah varians antar kelompok data (grup) signifikan atau tidak. Dasar uji homogenitas dalam ANOVA melibatkan, Hipotesis Nol (H_0) : Varians kelompok adalah sama (homogen), Hipotesis Alternatif (H₁): Setidaknya satu pasang kelompok memiliki varians yang berbeda (tidak homogen).

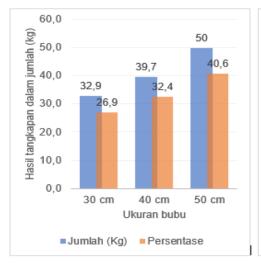
HASIL DAN PEMBAHASAN

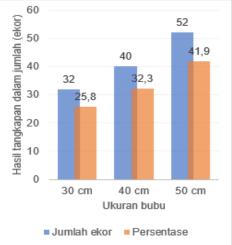
Hasil

Analisis Hasil Tangkapan

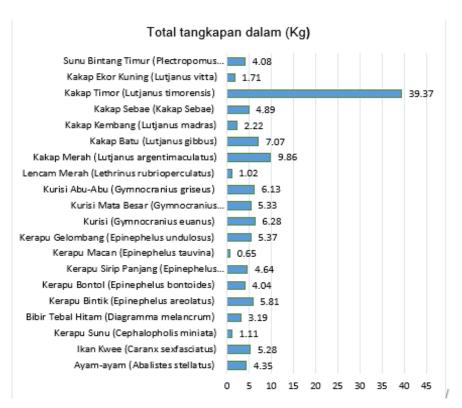
Hasil tangkapan yang didapatkan selama 9 trip penangkapan yaitu sebanyak 124 Individu atau 122,4 dengan jumlah spesies kilogram sebanyak 20 (dua puluh). Jenis. Komposisi total hasil tangkapan selama penelitian yang dilaksanakan di perairan Sorong dapat dilihat pada Tabel 6.

Tabel 6. Data hasil tangkapan dalam jumlah (Kg)

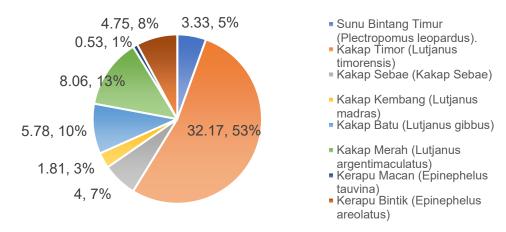

Ukuran			K	elomp	ok Tri	ip Ulan	gan						
Bukaan Mulut Bubu	ı	II	Ш	IV	V	VI	VII	VIII	IX	Jumlah (kg)	Persentase (%)		
Ukuran 30	5,4	2	2,5	5,4	2,3	4,7	3,3	3,2	4,3	32,9	26,9		
Ukuran 40	5,1	4,9	2	6,7	2,5	6,1	3,7	4	4,9	39,7	32,4		
Ukuran 50	6,3	2,2	2,2	4	3,2	9,8	7,5	7	7,6	49,7	40,6		
	16,7	9	6,6	16,1	7,9	20,6	14,5	14,2	16,8	122,4	100		


Tabel 7. Komposisi hasil tangkap bubu dengan menggunakan bukaan mulut yang berbeda

	Perlakuan: Ukuran Bukaan Mulut Bubu								
Ionio Hasil Tangkanan	Ukuran 30		Ukura	Ukuran 40		an 50	Jmlh	Jml	%
Jenis Hasil Tangkapan	Jml (ekor)	Jml (Kg)	Jml (ekor)	Jml (Kg)	Jml (ekor)	Jmlh (Kg)	(ekor)	(kg)	70
Ayam-ayam (Abalistes stellatus)	3	2,1	2	1,4	1	0,8	6	4,4	3,55
Kwee(Caranx sexfasciatus)	3	1,2	4	1,9	6	2,2	13	5,3	4,31
Kerapu sunu merah (Cephalopholis miniata)	1	0,7	0	0,0	1	0,5	2	1,1	0,91
Ikan bibir tebal hitam (Diagramma melancrum)	1	0,5	3	1,6	2	1,1	6	3,2	2,61
Kerapu totol (Epinephelus areolatus)	3	1,8	4	2,0	3	2,0	10	5,8	4,75
Kerapu bonto (Epinephelus bontoides)	1	2,0	1	2,0	0	0,0	2	4,0	3,30
Kerapu sirip panjang (Epinephelus longispinis)	2	1,1	5	2,6	2	1,0	9	4,6	3,79
Kerapu macan (Epinephelus tauvina)	0	0,0	1	0,2	3	0,5	4	0,7	0,53
Kerapu undulatus (Epinephelus undulosus)	0	0,0	1	1,6	2	3,8	3	5,4	4,39
Kurisi (Gymnocranius euanus)	1	3,2	1	3,1	0	0,0	2	6,3	5,13
Kurisi besar (Gymnocranius grandoculis)	1	1,6	1	1,0	2	2,7	4	5,3	4,35
Kurisi abu-abu (Gymnocranius griseus)	1	1,6	1	1,5	2	3,0	4	6,1	5,01
Lencam merah (Lethrinus rubrioperculatus)	1	0,5	0	0,0	1	0,5	2	1,0	0,83
Kakap merah (Lutjanus argentimaculatus)	2	4,8	1	2,6	1	2,6	4	9,9	8,06
Kakap batu (Lutjanus gibbus)	3	2,5	3	2,4	4	2,2	10	7,1	5,78
Kakap kembang (Lutjanus madras)	1	0,4	2	1,2	1	0,6	4	2,2	1,81
Kakap sebae (Lutjanus sebae)	3	1,5	1	0,2	5	3,3	9	4,9	4,00
Kakap timor (Lutjanus timorensis)	3	7,0	6	13,4	8	19,0	17	39,4	32,17
Kakap ekor kuning (Lutjanus vitta)	2	0,4	2	0,4	4	0,9	8	1,7	1,40
Kerapu karang (Plectropomus leopardus)	0	0,0	1	0,8	4	3,3	5	4,1	3,33
Total	32	33,0	40	39,7	52	49,7	124	122,4	100


Data tangkapan pada Tabel 7 menunjukkan spesies Kakap Timor (*Lutjanus timorensis*) mendominasi dengan 17 ekor seberat 39,4 kg, menyumbang 32,17% dari total berat. Ukuran bukaan mulut bubu yang lebih besar menangkap lebih banyak ikan baik dalam jumlah ekor maupun berat,

dengan ukuran 50 cm menangkap 52 ekor (49,7 kg) dibandingkan ukuran 30 cm yang hanya menangkap 32 ekor (33,0)kg). Ikan Kwee (Caranx sexfasciatus) Merah dan Kakap (Lutjanus argentimaculatus) juga merupakan spesies penting dengan kontribusi berat masing-masing 4,31%



Gambar 3. Hasil tangkapan Ikan menggunakan bubu

Gambar 4. Komposisi total tangkapan dalam kg

Gambar 5. Komposisi total tangkapan dalam persen

dan 6,46%. Distribusi tangkapan berdasarkan ukuran bukaan mulut bubu menunjukkan bahwa pemilihan ukuran yang tepat dapat meningkatkan efisiensi penangkapan.

Data pada Gambar 3 yang ditampilkan menunjukkan variasi hasil tangkapan ikan dalam jumlah (ekor) berdasarkan ukuran mulut bubu. Bubu dengan ukuran mulut 30 cm menangkap 32 ekor ikan (25.81% dari total), ukuran 40 cm menangkap 40 ekor ikan (32.26%), dan ukuran 50 cm menangkap 52 ekor ikan (41.94%). Dari sini, terlihat bahwa semakin besar ukuran mulut bubu, semakin banyak ikan yang

ditangkap. Bubu dengan diameter 50 cm menunjukkan hasil tangkapan tertinggi, diikuti oleh bubu berukuran 40 cm, dan terakhir bubu berukuran 30 Peningkatan ukuran bubu dari 30 cm ke 50 menghasilkan peningkatan cm signifikan dalam jumlah ikan yang tertangkap. Hasil penelitian kilogram menunjukkan bahwa ukuran bukaan mulut bubu berukuran diameter 30 cm menangkap 33 kg spesies/individu (26.96%), ukuran 40 cm menangkap 39.67 kg (32.41%), dan bubu berukuran 50 cm menangkap 49.73 kg (40.63%). Bubu dengan diameter 50 menunjukkan hasil tangkapan tertinggi, diikuti oleh bubu berukuran 40 cm dan 30 cm. Hasil ini mengindikasikan bahwa semakin besar ukuran bubu, semakin banyak ikan yang dapat ditangkap. Data penelitian dalam kilogram dapat dilihat pada Gambar 3.

Data pada Gambar 4 dan Gambar 5 menunjukkan total tangkapan berbagai jenis ikan dalam kilogram (kg). Dari grafik tersebut, jenis ikan yang paling banyak ditangkap adalah Kakap Timor (*Lutjanus timorensis*) dengan berat total 39,37 kg, diikuti oleh Kakap Batu (*Lutjanus gibbus*)

dengan berat 7,07 kg dan Kakap Sebae (Lutjanus Sebae) dengan berat 4,89 kg. Jenis ikan lainnya seperti Sunu Bintang Timur (Plectropomus leopardus), Kurisi Abu-Abu (Gymnocranius griseus), dan Ayam-ayam (Abalistes stellatus) masingmemiliki masing berat tangkapan sebesar 4,08 kg, 6,13 kg, dan 4,35 kg. Sementara itu, beberapa jenis ikan seperti Kerapu Macan (Epinephelus tauvina) dan Kerapu Sirip Panjang (Epinephelus longispinis) menunjukkan hasil tangkapan yang relatif rendah dengan berat masing-masing 0,65 kg dan 0,44 kg. Data ini mengindikasikan bahwa terdapat variasi signifikan dalam jumlah tangkapan untuk setiap jenis ikan, dengan Kakap Timor menjadi spesies yang paling dominan dalam hasil tangkapan.

Analisis data pada Penelitian ini menggunakan Rancangan Acak Kelompok (RAK) dengan uji F untuk menganalisis pengaruh ukuran bukaan mulut bubu yang berbeda terhadap hasil tangkapan ikan. Hasil Analisis Rancangan Acak Kelompok (RAK) diproses

Tabel 8. Hasil Analisa Ragam (Analysis of Variance/ANOVA) dalam jumlah (ekor)

			-			_	
Sumber	DB	JK	KT	F-Hitung	P-value	F tabel	
Keragaman	טט	JIX	IXI	i -i iiturig	r-value	0.05	0.01
Kelompok	8	59.30813	7.414	3.540 *	0.015	2.591	3.890
Perlakuan	2	15.85798	7.929	3.786*	0.045	3.634	6.226
Galat	16	33.50577	2.094				
Total	26	108.6719					

Tabel 9 Nilai U	ji BNT menggunakan	Tukey Tes dengar	Indikator huruf
Tabel 5. Itilial 6	i biri menggunakan	i Tukey Tes deligal	i iliulkatoi ilulul

Ukuran bukaan mulut bubu (cm)	N	Rata-rata (Perlakuan)	Notasi
30 (F1)	9	3.6600	а
40 (F2)	9	4.4078	a,b
50 (F3)	9	5.5256	С

menggunakan program *Statistical Product and Service Solutions* (SPSS).26 dapat dilihat pada Tabel 8.

Dari Tabel analisis di atas dapat diketahui bahwa F_{hitung} ulangan adalah 3,540 sedangkan F_{tabel} 0,05 adalah 2,591, di mana $F_{hitung} > F_{tabel}$ yang artinya terdapat pengaruh nyata. F_{hitung} perlakuan/ukuran mulut bubu adalah 3,785 sedangkan F_{tabel} 0,05 adalah 3,634 dimana $F_{hitung} > F_{tabel}$ yang artinya terdapat pengaruh nyata.

Setelah dilakukan perbandingan antara F hitung ulangan dan F hitung perlakuan maka diambil kesimpulan bahwa H₁ diterima dan H₀ ditolak, berarti ukuran bubu yang berbeda berpengaruh pada hasil tangkapan. Berdasarkan analisis pengaruh ukuran bubu yang berbeda terhadap hasil tangkapan, kemudian dilakukan uji lanjut untuk menilai apakah ada perbedaan signifikan antara hasil tangkapan ikan dengan bukaan mulut bubu yang ukuran berbeda. Maka dari itu dilakukan uji Beda Nyata Terkecil (BNT) atau juga disebut dengan Least Significant Difference (LSD). Hasil Uji BNT menggunakan Tukey Tes dapat dilihat pada Tabel 9.

Pada Tabel 9 menunjukkan perbandingan antara tiga ukuran mulut bubu yang berbeda di mana ukuran mulut bubu diameter (Ø) 30 cm (a) dan Ø 40 cm (a) tidak menunjukkan nilai ratarata yang berbeda signifikan pada alpha 0.05. Ukuran mulut bubu Ø 50 cm (c) memiliki rata-rata yang signifikan lebih tinggi dibandingkan dengan ukuran mulut bubu Ø 30 cm dan Ø 40 cm. Ukuran mulut bubu Ø 40 cm (b) berbeda signifikan dengan ukuran mulut bubu Ø 50 cm (c) tetapi tidak dengan ukuran mulut bubu Ø 30 cm (a). Pada semua ukuran bukaan mulut bubu ukuran mulut bubu Ø 50 cm (c) memiliki rata-rata yang signifikan lebih tinggi dibandingkan dengan ukuran mulut bubu Ø 30 cm (a) dan Ø 40 cm (b). Semakin besar modifikasi ukuran bukaan mulut bubu memiliki peluang untuk interaksi ikan masuk ke dalam bubu.

Pembahasan

Hasil tangkapan selama penelitian ini sebanyak 20 jenis spesies yang berbeda, dan semua spesies yang berhasil ditangkap termasuk dalam kategori organisme dasar perairan

(demersal species). Hasil tangkapan yang diperoleh terdiri dari Ayam-ayam (Abalistes stellatus), Ikan Kwee (Caranx sexfasciatus), Kerapu Sunu (Cephalopholis miniata), Bibir Tebal Hitam (Diagramma melancrum), Kerapu Bintik (Epinephelus areolatus), Kerapu Bontol (Epinephelus bontoides), Kerapu Sirip Panjang (Epinephelus longispinis), Kerapu Macan (Epinephelus tauvina), Kerapu Gelombang (Epinephelus undulosus), Kurisi (Gymnocranius euanus), Kurisi Mata Besar (Gymnocranius grandoculis), Kurisi Abu-Abu (Gymnocranius griseus), Lencam Merah (Lethrinus rubrioperculatus), Kakap Merah (Lutjanus argentimaculatus), Kakap Batu (Lutjanus gibbus), Kakap Kembang (Lutjanus madras), Kakap Sebae (Lutjanus Sebae), Kakap Timor (Lutjanus timorensis). Kakap Ekor Kuning (Lutjanus vitta), dan Sunu Bintang Timur (*Plectropomus leopardus*), merupakan berbagai spesies ikan yang memiliki nilai penting dalam penelitian data dapat dilihat pada Tabel (2.11). Jumlah individu yang tertangkap 124 individu ini termasuk kategori kurang dari rata hasil tangkap bubu pada umumnya ini disesuaikan dengan waktu perendaman alat tangkap bubu antara 2-3 hari. Penggunaan alat tangkap bubu dengan perendaman selama lima hari lebih efektif daripada tujuh hari karena

menghasilkan tangkapan yang lebih banyak (Simbolon G,I, 2020)

Jenis tangkapan dari segi ekonomisnya (Gambar 5), data menunjukkan distribusi persentase berbagai jenis ikan adalah Kakap Timor (Lutjanus timorensis) mendominasi dengan nilai tertinggi sebesar 32.17%, menandakan keberadaan yang signifikan dari spesies ini dalam tangkapan. Sebaliknya, Kerapu Macan (Epinephelus tauvina) memiliki nilai paling rendah yaitu 0.53%, menunjukkan bahwa spesies ini jarang ditemui dalam area tersebut. Jenis ikan lain seperti Kakap Merah (Lutjanus argentimaculatus) dan Kakap (Lutianus gibbus) juga cukup umum dengan nilai masing-masing 8.06% dan 5.78%. Sementara itu, Kakap Sebae (Lutjanus sebae) dan Kerapu Bintik (Epinephelus areolatus) memiliki nilai yang relatif lebih rendah, masing-masing sebesar 4% dan 4.75%. Spesies yang tertangkap sejalan dengan penelitian Sari & Adibrata, (2021) pada penelitian ini pula menyatakan bahwa Main Catch sebesar 95,45%, By Catch 4,54%.

Spesies yang tertangkap merupakan ikan ekonomis penting diduga didukung oleh oseanografi fisik, hal ini penting bagi ikan demersal karena jenis spesies tersebut hidup di dasar laut dan dipengaruhi oleh kondisi fisik lingkungan seperti suhu air mempengaruhi metabolisme dan pertumbuhan, sementara Salinitas berdampak pada keseimbangan osmotik dan distribusi. Kejernihan air berpengaruh pada aktivitas mencari makan dan menghindari predator, kecepatan sedangkan arus laut membawa nutrisi yang penting untuk ekosistem dasar laut. Menurut laporan penelitian yang dilakukan di perairan sorong Papua Barat Daya oleh Marasabessy et al., (2020) menyebutkan parameter fisika oseanografi pada masing-masing ekosistem antara lain suhu 30-33 °C, salinitas 27-29 ppt, kecerahan perairan antara 69-100% dan kecepatan arus 0,06-0,8 m/detik. Hal ini sejalan dengan pernyataan beberapa parameter penelitian dalam mendukung ekosistem pada ikan demersal. Suhu Air ideal berkisar antara 10°C hingga 20°C (NOAA Fisheries, 2023; Sumida et al., 2000), sementara salinitas berada pada rentang 30-35 ppt (Thorson et al., 2016; Sumida et al., 2000). kejernihan air diukur dengan Kedalaman ideal 10-30 m (Roy et al., 2012; Davies-Colley et al., 1993; Lough & Manning, 2001), dan terakhir, kecepatan arus adalah 0,1-0,5 m/s (Lindeboom et al., 2005).

Analisis ukuran mulut bubu

Pada semua ukuran bukaan mulut bubu ukuran mulut bubu Ø 50 cm (c) memiliki rata-rata yang signifikan lebih tinggi dibandingkan dengan ukuran mulut

bubu \emptyset 30 cm (a) dan \emptyset 40 cm (b). Semakin besar modifikasi ukuran bukaan mulut bubu memiliki peluang untuk interaksi ikan masuk ke dalam bubu. Menurut Dolllu (2013) modifikasi alat tangkap bubu dasar lebih efektif dalam menangkap ikan demersal. Menurut Sari & Adibrata, (2021) Ukuran mulut bubu yang paling besar memiliki panjang 50 cm dan lebar 25 cm, sedangkan ukuran mulut bubu yang paling kecil memiliki panjang 20 cm dan lebar 10 cm. Penelitian sebelumnya menunjukkan bahwa ukuran mulut bubu memengaruhi jenis dan jumlah ikan yang tertangkap. Menurut Miller (1990) menemukan bahwa bubu dengan ukuran mulut yang lebih besar cenderung menangkap lebih banyak ikan demersal besar dibandingkan dengan bubu berukuran mulut kecil. Menurut Noer (2011), beberapa famili ikan karang mendekati dasar bubu karena rasa ingin tahu terhadap objek asing, yang dikenal sebagai tigmotaksis. Beberapa famili, seperti Lutjanidae, Siganidae, Caesionidae, Holocentridae, dan Serranidae, menggunakan dasar bubu sebagai area mencari makan. Selain itu, dasar bubu diduga digunakan sebagai tempat istirahat atau untuk menunggu mangsa lewat. Ikan karnivora tertarik untuk masuk ke dalam dasar bubu karena tertarik pada mangsa yang terperangkap di dalamnya. Temuan ini sejalan dengan data yang menunjukkan bahwa bubu dengan ukuran mulut 50 cm menangkap lebih banyak ikan seperti Timor (Lutjanus Kakap timorensis) dibandingkan dengan ukuran mulut 30 cm atau 40 cm. Spesies berukuran kecil yang tertangkap sebagian meloloskan diri melalui cela-cela pada bubu. Menurut Hehanussa et al (2017), Kemampuan ikan untuk keluar dari bubu sangat dipengaruhi oleh ukuran tinggi tubuh atau lingkar tubuh serta ukuran celah pelolosan. Temuan penelitian tentang modifikasi bubu dan selektivitasnya telah dikemukakan oleh beberapa peneliti dan berkembang pesat meliputi, *Dolllu* (2013) menemukan bahwa modifikasi ukuran mulut bubu meningkatkan efektivitas penangkapan ikan demersal, mendukung temuan bahwa bubu dengan mulut yang lebih besar menangkap lebih banyak spesies seperti Kerapu Gelombang (Epinephelus undulosus) penelitian lain menunjukkan bahwa variasi dalam desain bubu, termasuk ukuran dan bentuk mulut, mempengaruhi selektivitas spesies yang tertangkap misalnya, penelitian oleh Ward et al. (2015) menunjukkan bahwa desain bubu dengan mulut lebih besar dan lebih terbuka meningkatkan peluang ikan besar masuk, sementara bubu dengan mulut kecil cenderung menangkap lebih banyak ikan kecil, Studi oleh Franco et al. (2018) menyatakan dalam menggunakan

ukuran mulut bubu yang berbeda dapat mengurangi tangkapan sampingan.

Berdasarkan hasil persentase tangkapan menggunakan bubu dengan tiga ukuran bukaan mulut yang berbeda selama penelitian, bubu dengan bukaan mulut diameter 50 cm tersebut terbukti berpengaruh terhadap hasil tangkapan. Hal ini diperkuat oleh kondisi perairan karang yang sangat baik. Menurut Riyanto (2008) menyebutkan bahwa efektivitas alat tangkap secara umum dapat dipengaruhi oleh beberapa faktor, termasuk pola perilaku ikan, ketersediaan atau kelimpahan ikan, kondisi oseanografi, serta parameter alat tangkap seperti desain dan konstruksi.

SIMPULAN DAN SARAN

Dari hasil penelitian identifikasi bukaan mulut bubu di perairan Sorong, pada tiga ukuran bukaan mulut bubu yang berbeda menunjukkan bahwa ukuran bukaan mulut bubu yang semakin besar berpengaruh signifikan terhadap hasil tangkapan.

Hasil uji F, dapat dilihat nilai F-hitung sebesar 3,786 untuk perlakuan (P-value 0,045) dan 3,540 untuk ulangan (P-value 0,015), keduanya lebih besar dari F-tabel 0,05. Uji Beda Nyata Terkecil (BNT) menunjukkan bahwa bukaan mulut bubu 50 cm secara signifikan meningkatkan rata-rata hasil tangkapan

ikan dibandingkan dengan bukaan 30 cm dan 40 cm.. Temuan ini merekomendasikan ukuran bukaan mulut bubu 50 cm untuk meningkatkan efisiensi penangkapan ikan dan mendukung pengelolaan perikanan berkelanjutan.

Perlu dilakukan penelitian lebih lanjut terutama dari metode pengukuran gunakan teknologi terkini seperti kamera bawah air atau sensor akustik untuk memantau interaksi ikan dengan bubu. Ini dapat memberikan wawasan lebih mendetail tentang bagaimana ikan berinteraksi dengan alat tangkap.

PERSANTUNAN

Ucapan terima kasih kami sampaikan kepada Pusat Pendidikan Kelautan dan Perikanan (Pusdik KP), Kementerian Kelautan dan Perikanan, atas dukungan melalui Program Beasiswa Pendidikan Tugas Belajar S-2 Tahun 2022–2024.

DAFTAR PUSTAKA

- Badan Pusat Statistik Kota Sorong. 2017. Produksi Ikan Tangkapan di Kota Sorong 2015–2017 (Katalog: 358). Sorong: Badan Pusat Statistik Kota Sorong.
- Badan Pusat Statistik Kota Sorong. 2023. Kota Sorong dalam Angka 2023. Sorong: BPS Kota Sorong.
- Darmawan, I. 2017. "Studi Pemanfaatan Sumberdaya Ikan Teri

- (Stolephorus spp) Menggunakan Alat Tangkap Bagan Perahu di Perairan Sorong." Tesis. Universitas Terbuka.
- Davies-Colley, R. J., D. G. Smith, dan R. C. Ward. 1993. "Water Quality Trends at a National Scale: Long-Term Changes in New Zealand Rivers." New Zealand Journal of Marine and Freshwater Research 27(2):145–163.
- Dolllu, E. A. 2013. *Modifikasi Alat*Tangkap Bubu Dasar Lebih Efektif

 dalam Menangkap Ikan Demersal.

 Makassar: Universitas

 Hasanuddin.
- Gerald, A., R. Steene, P. Humann, dan N. Deloach. 2003. Free Fish Identification Tropical Pacific.

 Jacksonville, FL: New World Publications.
- Hehanussa, K. G., S. Martasuganda, dan M. Riyanto. 2017. "Selektivitas Bubu Buton di Perairan Desa Wakal, Kabupaten Maluku Tengah." *Jurnal Penelitian Perikanan Indonesia* 23(1):1–10. doi:10.xxxx/jppi.2017.xx.
- Irianto, R. R. A., dan S. A. Mofu. 2022.

 "Teknik Penanganan Umpan Hidup
 pada Penangkapan Ikan dengan
 Alat Tangkap Pole and Line di KM.
 Cinta Bahari 09 Sorong Papua

- Barat." Jurnal Perikanan Kamasan Smart Fast 2(1):40–51.
- Iskandar, D., dan C. Rachmad. 2013. "Pengaruh Posisi Umpan terhadap Hasil Tangkapan Bubu Lipat." Buletin PSP 21(1):1–9.
- Iskandar, M. D., dan C. Rachmad. 2013.

 "Pengaruh Posisi Umpan terhadap
 Hasil Tangkapan Bubu Lipat di
 Desa Mayangan, Kabupaten
 Subang." Buletin PSP, IPB
 21(1):1–9.
- Jayanto, B. B., K. E. Prihantoko, dan F. Kurohman. 2018. "Pengaruh Penambahan Funel pada Alat Tangkap Bubu terhadap Hasil Tangkapan Rajungan (Portunus pelagicus) di Perairan Rembang, Jawa Tengah." Saintek Perikanan: Indonesian Journal of Fisheries Science and Technology 13(2):100–104.
- Karim, A., M. A. Hidayat, dan T. Ruma. 2024. "Identifikasi Rantai Pemasaran Hasil Tangkapan Hand Line di Pulau Raam, Distrik Sorong Kepulauan." *Jurnal Hybrid Warunayama* 3(1):15–25.
- Lindeboom, H. J., S. J. De Groot, dan E. M. Berghuis. 2005. "The Effects of Trawling on the Marine Environment." *ICES Journal of Marine Science* 62(3):575–593.

- Lough, R. G., dan J. P. Manning. 2001.

 "Tidal Front Effects on the Distribution and Behavior of Fish and Zooplankton on Georges Bank." Deep Sea Research Part II:

 Topical Studies in Oceanography 48(1–3):103–128.
- Makatita, A., D. L. Maturbongs, dan S. A. Mofu. 2013. "Identifikasi Tingkat Eksploitasi Sumber Daya Ikan Kembung (Rastrelliger kanagurta) Berdasarkan Ukuran Ikan yang Tertangkap dengan Alat Tangkap Bagan Maupun Purse Seine di Perairan Sorong." *Jurnal Akuatika* 4(1):20–30.
- Marasabessy, I., M. I. Badarudin, G. Sarwa, dan F. Iek. 2020.
 "Identifikasi Potensi Ekologi Pulau Kecil Berdasarkan Aspek Geofisik (Studi Kasus: Pulau Sakanun Kabupaten Sorong)." Jurnal Riset Perikanan dan Kelautan 2(1):176–188. Diakses 10 Oktober 2025 (https://ejournal.um-sorong.ac.id/index.php/jrpk/article/view/867).
- Miller, R. J. 1990. "Effect of Trap Design on Crustacean Capture: Species Selectivity and Environmental Impacts." *Fisheries Research* 9(2):89–98.
- Muharuddin, M. 2019. "Peran dan Fungsi
 Pemerintah dalam
 Penanggulangan Kerusakan

- Lingkungan." *Justisi* 5(2):97–112. doi:10.33506/js.v5i2.544.
- NOAA Fisheries. 2023. Habitat

 Conservation and Environmental

 Parameters for Marine Species.

 Washington, DC: National Oceanic
 and Atmospheric Administration,
 U.S. Department of Commerce.

 Diakses 10 Oktober 2025

 (https://www.fisheries.noaa.gov).
- Noer, J. 2011. "Perikanan Bubu Dasar di Kabupaten Bangka Selatan." Tesis. Sekolah Pascasarjana Institut Pertanian Bogor.
- Nugroho. 2008. *Dasar-Dasar Rancangan Percobaan*. Bengkulu: UNIB Press.
- Nurdin, M., dan F. Satria. 2020.

 "Pengembangan Teknologi
 Penangkapan Ikan Tepat Guna
 untuk Sumberdaya Ikan Pelagis di
 Kota Sorong." *Repository IPB*.
- Pangestuti. 2017. *Kota Sorong dalam Angka*. Sorong: Badan Pusat
 Statistik Kota Sorong.
- Pemerintah Provinsi Papua Barat Daya. 2023. Rencana Tata Ruang Wilayah (RTRW) Provinsi Papua Barat Daya Tahun 2023-2043. Sorong: Pemerintah Provinsi Papua Barat Daya, Dinas Pekerjaan Umum dan Penataan Ruang.
- Pranata, S. 2023. "Produksi Tangkapan Ikan Layang (Decapterus spp.)

- yang Tertangkap Menggunakan Alat Tangkap Bagan Perahu di PPI Kota Sorong." *Nusantara Hasana Journal* 3(5):372–381.
- Purwanto, A., A. Akir, D. P. F. Arsti, dan A. W. Bambang. 2013. "Perbedaan Umpan terhadap Hasil Tangkapan Udang Galah (Macrobracrium idea) Alat Tangkap Bubu Bambu (ICIR) di Perairan Rawapening." Fisheries Resources Utilization Management and Technology 3(2):72–81.
- Riyanto, M. 2008. "Respon Penciuman Ikan Kerapu Macan (Epinephelus fusgotus) terhadap Umpan Buatan." Tesis. Program Pascasarjana, Institut Pertanian Bogor.
- Roy, S., C. A. Llewellyn, E. S. Egeland, dan G. Johnsen. 2012.

 Phytoplankton Pigments:

 Characterization, Chemotaxonomy and Applications in Oceanography.

 Cambridge: Cambridge University Press.
- Sari, R. M., S. Adibrata, dan K. Salim. 2021. "Analisis Penggunaan Alat Tangkap Bubu terhadap Hasil Tangkapan Ikan yang Didaratkan di Kota Pangkalpinang." Akuatik: Jurnal Sumberdaya Perairan 15(2):82–88.

- Sari, S., S. Putra, dan S. Syahrul. 2021. "Evaluasi Efektivitas Alat Tangkap Bubu dalam Penangkapan Ikan Demersal di Perairan Indonesia." Jurnal Perikanan dan Kelautan 12(3):145–158.
- Simbolon, G. I. 2020. "Komposisi Hasil Tangkapan Bubu Dasar yang Didaratkan di Pelabuhan Perikanan Nusantara Sungailiat Kabupaten Bangka Provinsi Bangka Belitung." *Jurnal Penelitian Perikanan Laut* 21(1):1–9.
- Sumida, P. Y. G., J. H. Muelbert, dan L. C. Conte. 2000. "Hydrographic and Biological Processes Influencing Demersal Fish Assemblages in the Inner Continental Shelf off Southern Brazil." *ICES Journal of Marine Science* 57(2):401–413.
- Susilawati, M. 2015. Perancangan Percobaan. Edisi ke-1. Diedit oleh D. P. E. Nilakusmawati. Bali: Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Udayana.
- Taufiq, N., E. Dewita, dan K. Amri. 2020.

 "Pengaruh Ukuran Bukaan Mulut
 Bubu terhadap Hasil Tangkapan
 Ikan di Perairan Aceh Besar,
 Aceh." Jurnal Ilmiah Mahasiswa
 Kelautan dan Perikanan Unsyiah
 5(2):127–134.

- Thorson, J. T., M. L. Pinsky, dan E. J. Ward. 2016. "Modeling Spatio-Temporal Variation in Density and Abundance Using Grid-Based Data." *Fish and Fisheries* 17(3):576–593.
- Ward, P., dan R. A. Myers. 2015. "Trap Design Variations and Their Impact on Fish Catch Rates and Species Selectivity." *Marine Ecology Progress Series* 537:123–134.
- Wiyono, E. S., Mahiswara, dan M. S. "Penentuan Baskoro. 2018. Ukuran Bukaan Mulut Bubu Optimal untuk Hasil Tangkapan Maksimal di Perairan Teluk Palabuhanratu. Jawa Barat." Jurnal Penelitian Perikanan Indonesia 24(2):135-142.
- Yafeto, O. T., dan S. A. Mofu. 2022.

 "Karakteristik dan Hasil Tangkapan
 Alat Pancing Jig Metal di Perairan
 Sekitar Sorong." Enrichment:

 Journal of Management
 12(4):3075–3082.
- Zulkarnain. 2012. "Rancang Bangun Bubu Lipat Modifikasi dan Penggunaan Tanah Cacing (Lumbricus rubellus) sebagai Umpan Alternatif untuk Penangkapan Spiny Lobster." Disertasi. Institut Pertanian Bogor.
- Zulkarnain, Sudirman, dan Najamuddin. 2019. "Analisis Pengaruh Bukaan

Mulut Bubu terhadap Hasil Tangkapan Ikan di Perairan Kepulauan Seribu, DKI Jakarta." Jurnal Ilmu Kelautan dan Perikanan 29(2):107–114.